
beyond gravity

Ground Support Equipment Clampband PAS 1666 MVS

30 years of high performance, high reliable and high end GSE Clampbands.

Beyond Gravity delivers GSE Clampbands for spacecraft on-ground handling and testing. The GSE Clampband is designed to connect the S/C Interface Ring to any different Test-Adapter during the AIT campaign. The main focus of the design of the GSE Clampband has been set to achieve a high product reliability and easy handling.

Heritage

More than 50 GSE Clampbands have been delivered to institutional and commercial customers worldwide.

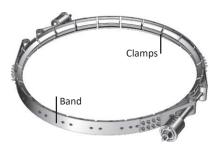
Key features

S/C Interface	PAS 1666 MVS	acc. to: Ariane 5 User's Manual (Issue 5, Revision 2) Soyuz User's Manual (Issue 2, Revision 1)
Temperature	-40°C to +100°C (operation	nal)
Factors of Safety	Yield/Ultimate 2/3 or 3/5	
Cleanliness	Class ISO 8 (ISO 14644-1)
Advantages	no grease vacuum compatible temperature compensatior easy application	1

Physical Properties

Dimensions	CB (Item) [L x W x H]	1850 × 1730 × 90 mm 72,9 × 68,2 × 3,6 in	
	Transportbox [L x W x H]	$2080 \times 940 \times 550 \text{ mm}$ $81.9 \times 37.1 \times 21.7 \text{ in}$	
Item mass Item in Transportbox		45 kg / 99 lbs 119 kg / 263 lbs	
Transportation	1	road, rail, sea, air compatible	

Options


Monitoring	online measurement of acting band pre-load	
Spare Parts	re Parts relevant spares included	
Clampband Tools	application tools optional	
Operator Training	in house or external site	

Deliverable Documents

Deliverable Hardware

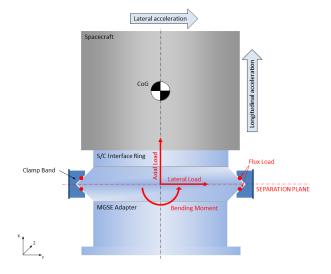
2 x Clampband-Half / 2 x Tapping Tool / User Manual / Certificates / Interface Control 1 x Transportbox / 2 x Strain Drawing / Test Report/ Proof-Load Certification

2 x Clampband-Half / 2 x Tapping Tool /
1 x Transportbox / 2 x Strain
Gauges (optional) / Readout Equipment (optional)
/ Tools (optional)

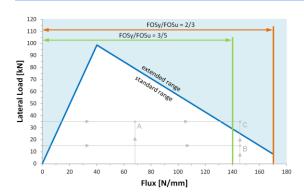
Pre-Load mechanism (incl. temperature compensation)

Readout Equipment

Transportbox


Load configuration

The following three load input parameters are required to determine the achievable safety factors of the Clampband:


- Axial Load [kN]
- Bending Moment [kNm]
- Lateral Load [kN]

Safety Factors:

FOSy ... Factor of Safety -Yield FOSu ... Factor of Safety Ultimate

Clampband Selection Diagram

Formula to estimate Flux due to given loads:

Flux [N/mm]=0.2*Axial Load [kN]+ 0.47*Bending Moment [kNm]

Instructions for use:

- Calculate the Flux using Axial Load and Bending Moment.
- Determine the intersection between flux and lateral load in the diagram.
- The position of the intersection of flux and lateral load in the diagram provides information about the achievable safety factors of the Clampband.
- If the point of intersection is in the white area (standard range), the load combination can be met by Beyond Gravity.
- If the point of intersection is in the blue area (extended range), the load combination has to be checked individually by Beyond Gravity.

Examples of how the use the diagram:

Name	Unit	Example A	Example B	Example C
Axial Load	[kN]	200	400	213
Bending Moment	[kNm]	60	140	220
Flux	[N/mm]	68	146	146
Lateral Load	[kN]	35	15	35

Example A:

The given load combination lies in the envelope of the standard range of the Clampband. The Clampand is feasible with a combination of FOSy/FOSu = 2/3 and also FOSy/FOSu = 3/5.

Example B:

The given load combination lies in the envelope of the standard range of the Clampband. The Clampand is feasible with a combination of FOSy/FOSu = 2/3.

Example C:

The given load combination lies outside the envelope of the standard range of the Clampband. Beyond Gravity has to check the load combination individually to see if the Clampband is feasible and fulfills customer needs.